All Rivers Run to the Sea: Private Learning with Asymmetric Flows

Yue Niu¹, Ramy E. Ali², Saurav Prakash³, Salman Avestimehr¹

¹University of Southern California (USC)

²Samsung (was with USC)

³University of Illinois Urbana-Champaign

Feb. 22, 2024

1/26

- Background and Problem Setting
- 2 Delta: Private Learning with Asymmetric Flows
- Empirical Evaluation: Utility, Privacy, Running Time
- 4 Discussion and Future Works

Background and Problem Setting

Delta: Private Learning with Asymmetric Flows

- 3 Empirical Evaluation: Utility, Privacy, Running Time
- 4 Discussion and Future Works

How to leverage cloud ML while ensuring privacy?

How to leverage cloud ML while ensuring privacy?

The Utility-Privacy-Complexity Trilemma

(Naive) DP-based ML

- Provable guarantee
- Severe accuracy drop

- Provable guarantee
- Severe accuracy drop

- Strong protection
- High complexity

- Provable guarantee
- Severe accuracy drop

- Strong protection
- High complexity

- Hardware security
- Long running time

- Slalom'18: Inference only \rightarrow This work: Inference and Training
- $\bullet~$ 3LegRace'21: Layerwise TEE-GPU communication \rightarrow This work: No layer-wise communication

イロン 不同 とくさい 不良 とうせい

Background and Problem Setting

2 Delta: Private Learning with Asymmetric Flows

3 Empirical Evaluation: Utility, Privacy, Running Time

4 Discussion and Future Works

What does Delta do?

Decompose model & data into a low-dimensional part & a residual part

- 1. Lightweight model (client-side, TEEs, ...)
 - Fed with the low-dimensional information-sensitive part of the data
 - Confidential computing (no DP noise needed)

What does Delta do?

Decompose model & data into a low-dimensional part & a residual part

- 1. Lightweight model (client-side, TEEs, ...)
 - Fed with the low-dimensional information-sensitive part of the data
 - Confidential computing (no DP noise needed)
- 2. Large model (offloaded to cloud)
 - Fed with the quantized residual part of the data
 - The residual data is protected by a DP noise

・ロン ・御 と ・ ヨ と ・ ヨ と … ヨ

What does Delta do?

Decompose model & data into a low-dimensional part & a residual part

- 1. Lightweight model (client-side, TEEs, ...)
 - Fed with the low-dimensional information-sensitive part of the data
 - Confidential computing (no DP noise needed)
- 2. Large model (offloaded to cloud)
 - Fed with the quantized residual part of the data
 - The residual data is protected by a DP noise
 - \Rightarrow Delta provides better utility-privacy trade-off than naive-DP methods

Delta Overview

Forward Propagation: Asymmetric Data Decomposition

 \rightarrow To leverage the low-rank structure of the data

Delta Overview

Forward Propagation: Perturbation & Binary Quantization

 \rightarrow To ensure privacy and reduce communication cost

Delta Overview

Forward Propagation: Model Decomposition

 \rightarrow To ensure low complexity in the private environment

Asymmetric Data Decomposition

• SVD \rightarrow asymmetric decomposition along channel dimension • DCT \rightarrow asymmetric decomposition along spatial dimension

Why asymmetric decomposition?

SVD Approximation Error

Random Binary Quantization

$$IR_{quant}(\cdot) = \mathrm{BinQuant}(IR_{noisy}(\cdot)) = \begin{cases} 0 & IR_{noisy}(\cdot) < 0\\ 1 & IR_{noisy}(\cdot) \ge 0 \end{cases}$$

Random Binary Quantization

<u>Theorem</u>: Delta ensures that any operation in the public environment satisfy (ϵ, δ) -DP given noise $\mathcal{N}(0, p\Delta/\epsilon \cdot \sqrt{2\log(1.25/\delta)})$ and mini-batch size *b*, where p = b/N is the sampling probability.

Private Backpropagation

$$\mathcal{M}_{\text{main}}: \boldsymbol{o}_{\text{tot}}(i) = \frac{e^{\boldsymbol{z}_{\text{main}}(i) + \boldsymbol{z}_{\text{res}}(i)}}{\sum_{j=1} e^{\boldsymbol{z}_{\text{main}}(j) + \boldsymbol{z}_{\text{res}}(j)}} \quad \text{for} \quad i = 1, \cdots, L$$
$$\mathcal{M}_{\text{res}}: \boldsymbol{o}_{\text{res}}(i) = \frac{e^{\boldsymbol{z}_{\text{res}}(i)}}{\sum_{j=1} e^{\boldsymbol{z}_{\text{res}}(j)}} \quad \text{for} \quad i = 1, \cdots, L,$$

15 / 26

Delta: Full Picture

- Asymmetric data decomposition
- Efficient model design
- Random binary quantization
- Private backpropagation

Background and Problem Setting

Delta: Private Learning with Asymmetric Flows

Empirical Evaluation: Utility, Privacy, Running Time

4 Discussion and Future Works

Experiment Highlights: Model Utility

 \rightarrow Lightweight model achieves good accuracy, but still residuals are useful

Experiment Highlights: Model Utility

Setting: ResNet-18 with $\epsilon = 1$

	Delta: perturb IR _{res}	naive-DP: perturb IR
CIFAR-10	92.4%	69.6% (↓ <mark>-22.8</mark>)
CIFAR-100	71.4%	48.3% (↓ -23 .1)
ImageNet	65.9%	34.4% (↓ -31 .5)

 \rightarrow Delta improves accuracy by up to 31.5%

Experiment Highlights: Model Complexity

	$\mathcal{M}_{bb}{+}\mathcal{M}_{main}$	SVD	DCT	\mathcal{M}_{res}
ResNet-18	48.3 M	0.52 M	0.26 M	547M
ResNet-34	437 M	1.6 M	0.7 M	3.5G

MACs of the modules in Delta

- Small model \mathcal{M}_{main} only costs 10% complexity of \mathcal{M}_{res}
- Costs of SVD and DCT are marginal

Running time with one single input

	Priv-only	3LegRace	Slalom	Delta
Train (ms/speedup)	1372	237 (6×)	- 04 (6×)	62 (22×)
merence (ms/speedup)	010	95 (5×)	04 (0×)	20 (25×)

3LegRace [Niu, et al, PETs 2022]: layer-wise feature decomposition on linear layers Slalom [Tramer, et al, ICLR 2019]: layer-wise computation distribution on linear layers

- Significant speedup compared to solely using private envs
- Faster compared to baselines due to reduced communication

Experiment Highlights: Protection Against Attacks

<u>Procedure</u>: Train a GAN with the quantized residuals Setting: ResNet-18, CIFAR-100

Against model inversion attack [SecretRevealer, CVPR'20]

Original samples

Reconstruction (no noise)

Reconstruction ($\epsilon = 1$)

イロン 不同 とくさい 不良 とうせい

- Attack can succeed on certain samples (e.g., row 1, col 3)
- Random quantization provide further protection

Background and Problem Setting

Delta: Private Learning with Asymmetric Flows

3 Empirical Evaluation: Utility, Privacy, Running Time

Discussion and Future Works

Future Works

Extend to More General Settings

User-Server Setting Federated Setting Remove Env Publi Ħ 8 (\aleph) Private Local Env 2 2

イロン 不同 とくほう 不良 とうほう 24 / 26

 (\aleph)

R

٢

۲

¢

Future Works

Extend to LMs

LMs' embedding also exhibits a low-ranks structure

Original text (top) and approximated (bottom) text with 1/5 principal vectors.

Large Language Models are foundational machine learning models that use deep learning algorithms to process and understand natural language. These models are trained on massive amounts of text data to learn patterns and entity relationships in the language.

Large Language Models can perform many types of language tasks, such as translating languages, analyzing sentiments, chatbot conversations, and more. They can understand complex textual data, identify entities and relationships between them, and generate new text that is coherent and grammatically accurate.

Large Language Models are foundational machine learning models that use deep learning algorithms to process and understand natural language. These models are trained on massive amounts of text data to learn patterns and entity relationships in the language.

Large Language Models can perform many types of language tasks, such and translating languages, analyzing sentiments, chatbot conversations, and more. They can understand complex textual data, identify entities and relationships between them, and generate new text that are coherent and grammatically accurate.

*) Q (4

Questions?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 の�?