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Motivation: Training-Test Mismatch

* ML training done with synthetic data and/or limited real data

e At inference, their performance may degrade due to the training-test mismatch
o Synthetic data does not capture the real-world complexity
o Even if real-data is used in training, the mismatch can still happen
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Motivation: Training-Test Mismatch

* ML models need to adapt after being deployed

* For mobiles, this needs to be done with minimal storage and computations
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Background and Related Works

* How can on-device ML models adapt with minimal overhead?
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Background and Related Works

* How can on-device ML models adapt with minimal overhead?

e Prior works in ML-based Wireless

1) Online Calibration/Adaptation
o ML models are not updated

o Then, ML predictions are successively calibrated based on the real-world observations

o Example: Block Error Rate (BLER) Prediction
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[A. Baknina et al., “Adaptive CQl and RI Estimation for 5G NR: A Shallow Reinforcement Learning Approach,” in IEEE GLOBECOM, 2020]
[Y.Huang et al., “DELUXE: A DL-based link adaptation for URLLC/eMBB multiplexing in 5G NR,” IEEE JSAC, 2021 ]
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Background and Related Works

* How can on-device ML models adapt with minimal overhead?

e Prior works in ML-based Wireless

1) Online Calibration/Adaptation
o ML models are not updated
o Then, ML predictions are successively calibrated based on the real-world observations
o Example: Block Error Rate (BLER) Prediction
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(e.g., ACKs/NACKs) (e.g., Rolling Performance still degrades in
Average BLER)

highly dynamic environments !
Based on previous ACKs/NACKs

[A. Baknina et al., “Adaptive CQl and RI Estimation for 5G NR: A Shallow Reinforcement Learning Approach,” in IEEE GLOBECOM, 2020] s ’\ M s U N G
[Y.Huang et al., “DELUXE: A DL-based link adaptation for URLLC/eMBB multiplexing in 5G NR,” IEEE JSAC, 2021 ]



Background and Related Works

* How can on-device ML models adapt with minimal overhead?

e Prior works in ML-based Wireless

2) Online Learning (e.g., Reinforcement Learning, Continual Learning)

o Requires frequent model updates, online gradient computations, backpropagation,
replay buffer, ...

o Mobiles (esp. in wireless modem) may not be able to support this
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Background and Related Works

* How can on-device ML models adapt with minimal overhead?
* Prior works in ML-based Wireless

3) Online Fine-tuning (Simpler)
o Mobiles may not be able to support this as well
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Our work: LightTune

* Alightweight online fine-tuning algorithm suitable for on-device learning
* e.g., mobile phones (esp. wireless modem), edge devices, ...

» Suitable when the ground-truth of the predicted metric becomes available after a delay
* e.g., Throughput prediction, Block error rate (BLER) prediction, ...

* As an application, we use LightTune for link adaptation in 5G/6G
* Upto 9.5% average throughput improvement compared to baselines
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Our work: LightTune

1) Backpropagation-free
v’ Fine-tuning using forward passes only

2) Threshold-based
v Only fine-tunes when needed, not continuously

3) Buffer-less
v Sample-by-sample fine-tuning
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LightTune: Detailed Algorithm

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm

| Standard Backpropagation | | Forward-Forward (FF) Algorithm [Hinton 22] |

Forward Pass real data
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Corrupted
Data

*-----------J
Backward Pass
(Gradient Update)

Positive Pass (Real Data)

L. B _ B B B B B § |
No Backward Pass

FF uses two forward passes to maximize
goodness for positive data and minimize it for
negative data, without propagating derivatives.

Used mainly in computer vision

G. Hinton, “The Forward-Forward Algorithm: Some Preliminary Investigations,” arXiv preprint arXiv:2212.13345, 2022.
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LightTune: Detailed Algorithm

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm

| Standard Backpropagation

| Forward-Forward (FF) Algorithm [Hinton 22] |

Forward Pass
(Prediction)

-----------J
Backward Pass
(Gradient Update)

v" Memory-efficient

o In FF, RAM scales with the size largest layer

Positive Pass (Real Data)

real data

C

Corrupted
Data

L. B _ B B B B B § |
No Backward Pass

FF uses two forward passes to maximize
goodness for positive data and minimize it for
negative data, without propagating derivatives.

o In backpropagation, RAM scales with depth of the network and layer sizes

v' Simplicity

o No computational graph nor Autodiff engines are needed
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LightTune: Detailed Algorithm

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm

Layer 1 is trained first with
its own loss function £,

True label
T Goal of this layer for neuron j:
(%, y+) Positive goodness: g;[j] = hi[j] > T

“Positive” sample
h,

(x,y-)

Negative goodness: g;[j] = h?(j) & T
”negative"lsample

T: Threshold, hyperparameter
h; : Output of layer [

Incorrect label

0, is learned

v’ Training is sequential, layer by layer SAMSUNG
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LightTune: Detailed Algorithm

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm

Layer 1 is trained first with  Then Layer 2 is trained with
its own loss function £, its own loss function £,
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0; is learned
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“Positive” sample

(x,y-)
“negative” sample

v’ Training is sequential, layer by layer SAMSUNG



LightTune: Proposed Loss Function

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm
o Softplus loss typically used in the FF algorithm

c S fln 14 ¢ (a5101-T) v L fln 14 (o 01-T)
Softplus,l — |S ‘IE‘; -\.fg T ‘S‘leb -\.lrg l -

>> <<

g+,11jl: positive goodness of neuron j in layer [
g-,ljl: negative goodness of neuron j in layer [
S, set of positive samples
S_: set of negative samples
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LightTune: Proposed Loss Function

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm
o Softplus loss typically used in the FF algorithm
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>> <<

g+,11jl: positive goodness of neuron j in layer [

Needs exponentiations & divisions to compute derivatives !! g_.ljl: negative goodness of neuron j in layer [
S, set of positive samples
S_: set of negative samples
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LightTune: Proposed Loss Function

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm
o Softplus loss typically used in the FF algorithm

M | M
Lsoftplus,] = Z iln l1+e gff[g] T Z iln l—l—t g- *)[3] ) .
o |~‘5\ M, \5\ M,

1E8, 1ES.

o To avoid the exponentiations and divisions, we propose an g+aLjl: positive goodness of neuron j in layer |
_device friendlv loss g-,ljl: negative goodness of neuron j in layer [
on-aevice Y S, set of positive samples

S_: set of negative samples

M, 1 M
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LightTune: Lightweight Gradient Computations

1) Backpropagation-free by leveraging the forward-forward (FF) algorithm

o Closed-form gradients for each layer
o Just lightweight computations to fine-tune

Vw,Lprop,s = [(2(g+1 —T) —4) ©2hy; O 1(zy; > [})] t,, + (2090 —T)+4)©2h; ©1(x; > 0)] :1:1,
Vi, Loropt = (2940 —T) —4) ©2hy; © Ly >0)+ (291 —T)+4) ©2h_; © 1L(x_; > 0).
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LightTune: Detailed Algorithm

2) Threshold-based

* Fine-tuning is only performed when needed
v' When error prediction error reaches a pre-defined threshold §

3) Buffer-less
e Updates are performed on a sample-by-sample basis (i.e., no buffer)
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LightTune: Convergence

Theorem: Assuming
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Applications of LightTune: Block Error Rate (BLER) Prediction

* BLER prediction has many application in 5G/6G including link adaptation, PMI selection, ...
* Ground-truth can be computed after a delay (i.e., end of the CSI-RS period)

Pyier Pyier
BLER Prediction Actual BLER Computed
> Time
| |
Start of CSI-RS period End of CSI-RS period
e(Pyier, PoLer) = ‘PBLER — Prrer
. A

~
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NNACK

PpLer = - _
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Applications of LightTune: Block Error Rate (BLER) Prediction

* To simulate the training-test mismatch, we choose mismatched training and test conditions.

Parameter Training Test

Channels TDL-A30 TDL-A30, TDL-B50, TDL-C200
SNR Low (012 dB) Low/Medium/High (040 dB)
Delay Profile Low Delay Low/High Delay

Doppler Frequency Low (10 Hz)  Low/Medium (10-50 Hz)

Parameter Value
Neural Network Size (13, 32, 32]
Activation Function RelLU

Offline Learning Rate o« 0.03
Online Learning Rate oy 0.03
Fine-tuning Threshold § 0.3

Optimizer Adam (31 = 0.9, 32 = 0.999 ¢ = 10%)
Threshold 7' 9

Epochs 22,000

Training Samples 83,200

BLER Quantization Step A = 0.1

SAMSUNG



Applications of LightTune: Block Error Rate (BLER) Prediction

* Online fine-tuning is a must!
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Applications of LightTune: Link Adaptation in 5G/6G

* Conventional table-based link adaption algorithms [e.g., Peralta‘22] are slow to converge
o Initially, they may select CQls with high BLER

E. Peraltaet al., “Outer loop link adaptation enhancements for ultra reliable low latency communications in 5G,” in IEEE VTC, 2022. s ’\ M S u N G



Applications of LightTune: Link Adaptation in 5G/6G

* Conventional table-based link adaption algorithms [e.g., Peralta‘22] are slow to converge
o Initially, they may select CQls with high BLER

* To mitigate this high BLER, we use our BLER prediction algorithm as a backoff mechanism.

———————————————————————————— '— —————
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e.g,CQl=X !
non-ML s e I : I
Algorithm i [
ok :Fmal CQl Reporty I
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Predictor  Sguimnsegt PR S ; I
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I L I
) Performance Feedb%ck 1 1
UE (User Equipment) (ACK/NACK) ¥ | !

E. Peraltaet al., “Outer loop link adaptation enhancements for ultra reliable low latency communications in 5G,” in IEEE VTC, 2022. s ’\ M s u N G



Applications of LightTune: Link Adaptation in 5G/6G

* Based on the BLER prediction algorithm, we propose a CQl selection algorithm.

Normalized Throughput (%)
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(a) TDL-B50 (Dop. freq. = 30 Hz).
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(b) TDL-C200 (Dop. freq. = 50 Hz)

Up to 9.5% throughput improvement
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Takeaways & Future Work

1. Online fine-tuning is essential for ML-based wireless algorithms

2. We showed case for CQJ selection, but LightTune can be applied to other problems
e Rank Selection
* PMI Selection

SAMSUNG



Takeaways & Future Work

3. Instead of using ML entirely, ML can serve just as a guide for the baseline algorithm
* Less complexity than using ML entirely
e Starting from good initial solution (i.e., baseline solution)

Input Data /
System State

Traditional
EEREE
Algorithm
(Non-ML)

ML Supervisor
/ Predictor
(ML-Based)

Initial Qutput /
Recommendation
(e.g., Action A)

Final System

Output / Action
(e.g., Action Aor

Decision Adjusted Action BL
Logic/

Overrider

System
Environment /
Process

Performance Prediction /
Outcome Forecast
(e.g., High Risk for Action A)

Outcome Feedback
(e.g., Success/Failure)
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Thank you
Questions?
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