Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning

Ramy E. Ali

In collaboration with Jinhyun So (USC), Başak Güler (UCR), Salman Avestimehr (USC) and Jiantao Jiao (UC Berkeley)

2021

The Promise of Federated Learning

Ensuring **privacy** by avoiding data sharing?

Model Inversion Attack

Problem: Individual model updates can leak sensitive data

Remedy: Secure Model Aggregation

• Secure aggregation ensures that the server only learns the global model.

Secure Aggregation is Essentially an MPC problem with User Dropouts

Bad news ...

• Secure aggregation, however, is not secure over multiple rounds.

Bad news ...

- Secure aggregation, however, is not secure over multiple rounds.
- Intuition: partial user participation leads to privacy leakage

This is a serious issue!

- Random selection may reveal all individual models.
- Experiment
 - N=40 users
 - MNIST dataset with non-IID distribution
 - K=8 users are selected at random at each round
 - The server estimates the individual gradients through least-squares

This is a serious issue!

- Random selection may reveal all individual models.
- Experiment
 - N=40 users
 - MNIST dataset with non-IID distribution
 - K=8 users are selected at random at each round
 - The server estimates the individual gradients through least-squares

This talk

- Introduce a notion/metric for multi-round privacy
- Propose Multi-RoundSecAgg, which ensures multi-round privacy
 - It further optimizes the average number of participating users (convergence rate) and fairness in user selection
 - $\circ\,$ It also introduces a trade-off between "privacy" and "convergence rate"

Federated Averaging with Partial User Participation

• Participation matrix $P^{(J)} = \begin{pmatrix} p^{(0)} \\ \vdots \\ p^{(J-1)} \end{pmatrix} \in \{0,1\}^{J \times N}$, J: number of rounds

How should we choose $P^{(J)}$ to ensure long-term privacy?

• A multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

• A multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

 $a_1 \sum_{j \in S_1} x_j + a_2 \sum_{j \in S_2} x_j + \dots + a_n \sum_{j \in S_n} x_j$, where $|S_i| \ge T$.

• **Example (**T=2): the best the server can do is reconstructing $x_i + x_j$ (for some *i* and *j*)

• A multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

$$a_1 \sum_{j \in S_1} x_j + a_2 \sum_{j \in S_2} x_j + \dots + a_n \sum_{j \in S_n} x_j$$
, where $|S_i| \ge T$.

- **Example (**T=2): the best the server can do is reconstructing x_i+x_i (for some *i* and *j*)
- Worst-case (strong) assumption 1: the model coefficients in each group are the same
- Worst-case (strong) assumption 2: user's model stays the same across different rounds

1. User Partitioning

• Large multi-round privacy T = group size

1. User Partitioning

- Large multi-round privacy T = group size
- In many rounds, however, no groups are available

2. Random Selection

• Small multi-round privacy T = 1

Theorem: In Random Selection, the server can reconstruct all individual models of the N users after N rounds with probability at least 1-exp(-cN),

where c is a constant.

2. Random Selection

- Small multi-round privacy T = 1
- Any subset of available users can be selected in any round

Metric 3: Aggregation Fairness Gap (F)

- Aggregation Fairness Gap F
 - F = max. average participation frequency min. average participation frequency

Metric 3: Aggregation Fairness Gap (F)

- Aggregation Fairness Gap F
 - F = max. average participation frequency min. average participation frequency

Metric 3: Aggregation Fairness Gap (F)

- Aggregation Fairness Gap F
 - F = max. average participation frequency min. average participation frequency

Proposed Approach: Multi-RoundSecAgg

1) Batch Partitioning

- Input: N, $K \le N$, $1 \le T \le K$
- Output: A family of *K*-user sets satisfying the multi-round privacy *T*. This family is represented by a matrix *B*.

2) Available batch selection to guarantee fairness

- Input: Set of available users at round t and B.
- Output: Set of users that will participate at round *t*.

1) Batch Partitioning

Idea: Partition users into T-user batches; allow selection of any K/T available batches

Theorem: aggregated models in the same batch can't be separated across different rounds even through non-linear mixtures of received aggregates.

- 2) Available batch selection to guarantee fairness
 - Input: Set of available users at round *t* and *B*.
 - Output: Set of users that will participate at round t.
 - Idea: Select based on the minimum frequency of participation.

- 2) Available batch selection to guarantee fairness
 - Input: Set of available users at round *t* and *B*.
 - Output: Set of users that will participate at round t.
 - Idea: Select based on the minimum frequency of participation.

An Illustrative Experiment

• Experiment (N=40 users)

Random Selection

- MNIST Dataset & Non-IID Setting.
- K=8 users are selected at random at each round.
- Dropout probability $p_i \sim \{0.1, 0.2, 0.3, 0.4, 0.5\}$

Reconstruction Error < 0.005 for many users

• The server estimates the individual gradients through least squares.

 Multi-RoundSecAgg (T=2) Reconstruction Error > 0.25 for all users

Multi-RoundSecAgg Theoretical Guarantees

Theorem: Multi-RoundSecAgg with parameters $N, K \leq N$ and $1 \leq T \leq K$ ensures

- 1. a multi-round privacy $1 \le T \le K$,
- 2. an aggregation fairness gap F = 0, and
- 3. an average aggregation cardinality *C*

$$C(T) = K\left(1 - \sum_{i=N/T-K/T+1}^{N/T} {N/T \choose i} q^i (1-q)^{N/T-i}\right)$$

 $q = 1 - (1 - p)^T$, *p*: dropout probability

Multi-RoundSecAgg Theoretical Guarantees

Theorem: Multi-RoundSecAgg with parameters $N, K \leq N$ and $1 \leq T \leq K$ ensures

,

- 1. a multi-round privacy $1 \le T \le K$,
- 2. an aggregation fairness gap F = 0, and
- 3. an average aggregation cardinality *C*

$$C(T) = K \left(1 - \sum_{i=N/T-K/T+1}^{N/T} {N/T \choose i} q^i (1-q)^{N/T-i} \right)$$

 $q = 1 - (1 - p)^T$, *p*: dropout probability

Example (N = 120, K = N/10 = 12, p = 0.2) for T = N/20 = 6, we have $C=11.77 \approx N/10$

Multi-RoundSecAgg Theoretical Guarantees

Theorem: Multi-RoundSecAgg with parameters $N, K \leq N$ and $1 \leq T \leq K$ ensures

- 1. a multi-round privacy $1 \le T \le K$,
- 2. an aggregation fairness gap F = 0, and
- 3. an average aggregation cardinality C

Trade-off between "Multi-round Privacy Guarantee" & "Average Aggregation Cardinality"

Multi-RoundSecAgg Convergence Guarantees

Assumptions

- 1. The loss functions $L_1, L_2, ..., L_N$ are ρ -smooth.
- 2. The loss functions $L_1, L_2, ..., L_N$ are μ -strongly convex.
- 3. The variance of the stochastic gradients at user *i* is bounded by σ_i^2 .
- 4. The expected squared norm of the stochastic gradients is uniformly bounded by G^2 .

$$E[L(\mathbf{x}^{(j)})] - L^* \leq \frac{\rho}{\gamma + \frac{C}{K}JE - 1} \left(\frac{2(\alpha + \beta)}{\mu^2} + \frac{\gamma}{2} E[\|\mathbf{x}^{(0)} - \mathbf{x}^*\|] \right) ,$$

C controls the convergence rate

Experiments

Setup

- N = 120 users, K = 12 users.
- Dataset: CIFAR-10
- Architecture: LeNet

Key Metrics

Multi-round privacy guarantee (T)

Average aggregation cardinality (C)

Aggregation fairness gap (F)

Experiments

Setup

- N = 120 users, K = 12 users. ٠
- Dataset: CIFAR-10 ٠
- Architecture: LeNet ٠

Dropout probability, $p_i \sim \{0.1, 0.2, 0.3, 0.4, 0.5\}$

(a) I.I.D Data Distribution

(b) Non I.I.D Data Distribution

(c) Trade-off between multi-round privacy guarantee & average aggregation cardinality

10

12

Concluding Remarks

- Random user selection in FL can lead to serious privacy leakage
- MultiRoundSecAgg is the first scheme for mitigating this challenge
- MultiRoundSecAgg reveals an interesting tradeoff between "privacy" and "convergence rate" in FL

Concluding Remarks

- Random user selection in FL can lead to serious privacy leakage
- MultiRoundSecAgg is the first scheme for mitigating this challenge
- MultiRoundSecAgg reveals an interesting tradeoff between "privacy" and "convergence rate" in FL
- Potential future directions
 - Our metric for multi-round privacy is very strong. Careful relaxations may lead to substantial improvements (e.g., in aggregation cardinality)
 - Formalizing a fundamental trade-off between privacy and convergence-rate in FL?
 - Our protocol guarantees that only an aggregate of models can be learned. How to bound privacy leakage from aggregate models?

$$x_1^{(t)} + x_2^{(t)} + \dots + x_N^{(t)}$$

Questions? Thank you

Additional Slides

Optimality of Multi-RoundSecAgg

- Any strategy satisfying the multi-round privacy guarantee must have a batch partitioning structure.
- For given $N, K \leq N/2$ and T, any strategy satisfying a multi-round privacy T can have at most R_{max} user sets

$$R_{\max} \leq \binom{N/T}{K/T} = R_{BP}$$
 number of sets in BP

Our Multi-round Privacy is Strong

• A multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

Each group has the same coefficient.

• The relaxed multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

• The relaxed multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

When *T* = 2, this allows reconstructing $a_i x_i + a_j x_j$ which can reveal x_i if $a_i \gg a_j$.

• The relaxed multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

Batch partitioning is not necessary

• The relaxed multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

What's the optimal strategy?

• The relaxed multi-round privacy *T* requires that any non-zero partial sum that the server can reconstruct to be of the form

 $\sum_{j \in \mathcal{S}} a_j x_j$, where $|\mathcal{S}| \geq T$

Example (N=6, K=4, T=2)

Aggregation Fairness Gap F & Average Aggregation Cardinality C

Aggregation Fairness Gap F

$$F = \max_{i \in [N]} \lim_{J \to \infty} \sup \frac{1}{J} E\left[\sum_{t=0}^{J-1} \{\boldsymbol{p}^{(t)}\}_i\right] - \min_{i \in [N]} \lim_{J \to \infty} \inf \frac{1}{J} E\left[\sum_{t=0}^{J-1} \{\boldsymbol{p}^{(t)}\}_i\right]$$

maximum average participation frequency minimum average participation frequency

Average Aggregation Cardinality C (Average number of participating users)

$$C = \lim_{J \to \infty} \inf \frac{1}{J} E \left[\sum_{t=0}^{J-1} \left\| \boldsymbol{p}^{(t)} \right\|_{0} \right]$$

Multi-RoundSecAgg Convergence Guarantees

Assumptions

- 1. The loss functions $L_1, L_2, ..., L_N$ are ρ -smooth.
- 2. The loss functions L_1, L_2, \dots, L_N are μ -strongly convex.
- 3. The variance of the stochastic gradients at user *i* is bounded by σ_i^2 .
- 4. The expected squared norm of the stochastic gradients is uniformly bounded by G^2 .

$$E[L(\mathbf{x}^{(J)})] - L^* \leq \frac{\rho}{\gamma + \frac{C}{K}JE - 1} \left(\frac{2(\alpha + \beta)}{\mu^2} + \frac{\gamma}{2} E[\|\mathbf{x}^{(0)} - \mathbf{x}^*\|] \right) ,$$

where *E* is the number of local SGD steps, $\alpha = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^2 + 6 \rho \Gamma + 8(E-1)^2 G^2$, $\beta = \frac{4(N-K)E^2G^2}{K(N-1)}$, $\Gamma = L^* - \sum_{i=1}^{N} L_i$ and $\gamma = \max\{\frac{8\rho}{\mu}, E\}$

 Any strategy satisfying the multi-round privacy guarantee must have a batch partitioning structure.

 Any strategy satisfying the multi-round privacy guarantee must have a batch partitioning structure.

Proof Idea

- Consider any scheme with a matrix $V_{R \times N}$ and denote the linear combination used by the server by $z_{1 \times R}$, $z_i \sim U[0, 1]$, $i \in [R]$.
- For the scheme to have privacy *T*, at least *T* elements of *zV* have to be equal.

 Any strategy satisfying the multi-round privacy guarantee must have a batch partitioning structure.

Proof Idea

- Consider any scheme with a matrix $V_{R \times N}$ and denote the linear combination used by the server by $z_{1 \times R}$, $z_i \sim U[0, 1]$, $i \in [R]$.
- For the scheme to have privacy T, at least T elements of zV have to be equal.

This implies that at least T columns of V are equal as $z_i \sim U[0, 1]$.

Batch partitioning is necessary

• Any strategy satisfying the multi-round privacy guarantee must have a batch partitioning structure.

Proof Idea

- Consider any scheme with a matrix $V_{R \times N}$ and denote the linear combination used by the server by $z_{1 \times R}$, $z_i \sim U[0, 1]$, $i \in [R]$.
- For the scheme to have privacy T, at least T elements of zV have to be equal.

This implies that at least T columns of V are equal as $z_i \sim U[0, 1]$.

Batch partitioning is necessary

• For given $N, K \leq N/2$ and T, any strategy satisfying a multi-round privacy T can have at most R_{max} user sets

$$R_{\max} \leq \binom{N/T}{K/T} = R_{BP}$$
 number of sets in BP

References

 [1] H Brendan McMahan et al.. "Communication-efficient learning of deep networks from decentralized data." In Int. Conf. on Artificial Int. and Stat. (AISTATS), pages 1273–1282, 2017.

[2] Balázs Pejó, and Gergely Biczók. "Quality Inference in Federated Learning with Secure Aggregation." arXiv:2007.06236 (2020).

[3] M. Lam et al. "Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix." arXiv:2106.06089 (2021).