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The Promise of Federated Learning

Main principle: train locally - average globally
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Ensuring privacy by avoiding data sharing?



But ...

Model Inversion Attack
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Figure 1: Reconstruction of an input image z from the gradient VyLy(z, y). Left: Image from the [Gelplng et aI]
validation dataset. Middle: Reconstruction from a trained ResNet-18 trained on ImageNet. Right:
Reconstruction from a trained ResNet-152.
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Problem: Individual model updates can leak sensitive data




Remedy: Secure Model Aggregation

« Secure aggregation ensures that the server only learns the global model.
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Secure Aggregation is Essentially an MPC problem with User Dropouts



Bad news ...

« Secure aggregation, however, is not secure over multiple rounds.



Bad news ...

« Secure aggregation, however, is not secure over multiple rounds.

* Intuition: partial user participation leads to privacy leakage
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This Is a serious Issue!

« Random selection may reveal all individual models.
« Experiment
 N=40 users
 MNIST dataset with non-IID distribution
« K=8 users are selected at random at each round
* The server estimates the individual gradients through least-squares
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This Is a serious Issue!

« Random selection may reveal all individual models.

« Experiment
 N=40 users

« MNIST dataset with non-IID distribution
« K=8 users are selected at random at each round

* The server estimates the individual gradients through least-squares
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Similar concerns have also been reported in some recent works:
® Pejo et al. "Quality Inference in Federated Learning with Secure Aggregation.", 2020.
e M. Lam et al. "Gradient Disaggregation: Breaking Privacy in Federated Learning by
Reconstructing the User Participant Matrix.", ICML 2021.




This talk

e Introduce a notion/metric for multi-round privacy

e Propose Multi-RoundSecAgg, which ensures multi-round privacy

o It further optimizes the average number of participating users (convergence rate)
and fairness in user selection

o It also introduces a trade-off between “privacy” and “convergence rate”



Federated Averaging with Partial User Participation
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* Participation matrix PO = ( > € {0,1¥ %N | J: number of rounds
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How should we choose P to ensure long-term privacy?



Metric 1: Multi-round Privacy (T)
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Metric 1: Multi-round Privacy (T)

The server must not learn any
aggregate model of less than T users.
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Metric 1: Multi-round Privacy (T)

« A multi-round privacy T requires that any non-zero partial sum that the server
can reconstruct to be of the form

aq Zjesl xj + 4, ZjESZ xj + -4+ a, ZMJ}@ X, where |Sl| >T.
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Metric 1: Multi-round Privacy (T)

« A multi-round privacy T requires that any non-zero partial sum that the server
can reconstruct to be of the form

e Example (T=2): the best the server can do is reconstructing x;+x; (for some / and j)



Metric 1: Multi-round Privacy (T)

« A multi-round privacy T requires that any non-zero partial sum that the server
can reconstruct to be of the form

a1 Yjes, Xj + a2 Xjes, Xj + -+ where |§;| = T.

e Example (T=2): the best the server can do is reconstructing x;+x; (for some / and j)
e \Worst-case (strong) assumption 1: the model coefficients in each group are the same

e \Worst-case (strong) assumption 2: user’'s model stays the same across different
rounds



Baselines

1. User Partitioning
« Large multi-round privacy T = group size 1

Group 1 Group 2 Group N/K



Baselines

1. User Partitioning
« Large multi-round privacy T = group size 1
* In many rounds, however, no groups are available L L

Group 2 Group N/K




Baselines

2. Random Selection
*  Small multi-round privacy T = 1 &1

Server Select a random subset of available users

/ \

Theorem: In Random Selection, the server can reconstruct all individual

models of the N users after N rounds with probability at least
1-exp(-cN),

where c is a constant.



Baselines

2. Random Selection
*  Small multi-round privacy T = 1 &1
« Any subset of available users can be selected in any round pde

Server Select a random subset of available users



Metric 2: Average Aggregation Cardinality (C)

Aggregation Cardinality C = Average number of participating users over all rounds



Metric 2: Average Aggregation Cardinality (C)

Aggregation Cardinality C = Average number of participating users over all rounds
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Metric 2: Average Aggregation Cardinality (C)

Aggregation Cardinality C = Average number of participating users over all rounds

1. User Partitioning T, 2. Random Selection
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Metric 2: Average Aggregation Cardinality (C)

Aggregation Cardinality C = Average number of participating users over all rounds

1. User Partitioning T, 2. Random Selection
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Metric 3: Aggregation Fairness Gap (F)

» Aggregation Fairness Gap F

F = max. average participation frequency — min. average participation frequency
T,C=1
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Metric 3: Aggregation Fairness Gap (F)

» Aggregation Fairness Gap F

F = max. average participation frequency — min. average participation frequency
T,C=1

Partitioning ¢
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Metric 3: Aggregation Fairness Gap (F)

* Aggregation Fairness Gap F

F = max. average participation frequency — min. average participation frequency
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Proposed Approach: Multi-RoundSecAgg

1) Batch Partitioning
* Input: N, K<N,1<T<K
« Output: A family of K-user sets satisfying the multi-round privacy T.
This family is represented by a matrix B.

2) Available batch selection to guarantee fairness
* Input: Set of available users at round t and B.
« Output: Set of users that will participate at round t.



Multi-RoundSecAgg

1) Batch Partitioning
Idea: Partition users into T-user batches; allow selection of any K/T available batches

This results in a family of Rgp = (%D sets.
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Multi-RoundSecAgg

1) Batch Partitioning
Example (N =8,K=4&T = 2)
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Multi-RoundSecAgg

1) Batch Partitioning
Example (N =8,K=4&T = 2)

N/T
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Theorem: aggregated models in the same batch can’t be separated across different rounds even
through non-linear mixtures of received aggregates.



Multi-RoundSecAgg

2) Available batch selection to guarantee fairness
* Input: Set of available users at round t and B.
« Output: Set of users that will participate at round t.
* |dea: Select based on the minimum frequency of participation.
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Multi-RoundSecAgg

2) Available batch selection to guarantee fairness
e Input: Set of available users at round t and B.
« Output: Set of users that will participate at round t.
* |dea: Select based on the minimum frequency of participation.

Server
f3 =3 fa=1
B
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L has higher frequency



An lllustrative Experiment

e Experiment (N=40 users)
o MNIST Dataset & Non-IID Setting.
o K=8 users are selected at random at each round.
o Dropout probability p;~{0.1,0.2,0.3,0.4,0.5}
o The server estimates the individual gradients through least squares.
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* Multi-RoundSecAgg (T=2)
Reconstruction Error > 0.25 for all users

« Random Selection
Reconstruction Error < 0.005 for many users



Multi-RoundSecAgg Theoretical Guarantees

Theorem: Multi-RoundSecAgg with parameters N,K < Nand 1 < T < K ensures
1. amulti-round privacy 1 < T <K,
2. an aggregation fairness gap F = 0, and
3. an average aggregation cardinality C
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q=1— (1 -p)7, p: dropout probability
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Each batch is not available with probability q



Multi-RoundSecAgg Theoretical Guarantees

Theorem: Multi-RoundSecAgg with parameters N,K < Nand 1 < T < K ensures
1. amulti-round privacy 1 < T <K,
2. an aggregation fairness gap F = 0, and
3. an average aggregation cardinality C

(N{T) gi(1— q)N/T—i> ’

q=1— (1 -p)7, p: dropout probability

N/T

i=N/T—K/T+1

C(T) = K<1 —

Select K/T batches

Example (N =120, K =N/10=12,p = 0.2)
forT = N/20 = 6,we have C=11.77 = N/10

Batch 1 Batch N/T
Each batch is not available with probability q



Multi-RoundSecAgg Theoretical Guarantees

Theorem: Multi-RoundSecAgg with parameters N,K < Nand 1 < T < K ensures
1. amulti-round privacy 1 < T <K,
2. an aggregation fairness gap F = 0, and
3. an average aggregation cardinality C
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Trade-off between “Multi-round Privacy Guarantee” & “Average Aggregation Cardinality”



Multi-RoundSecAgg Convergence Guarantees

Assumptions
1. The loss functions L4, Lo, ..., Ly are p-smooth.
2. The loss functions Lq, Ly, ..., Ly are u-strongly convex.
3. The variance of the stochastic gradients at user i is bounded by o7
4. The expected squared norm of the stochastic gradients is uniformly bounded by G2.
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The number of Partial Sum

Experiments

Setup
e N=120users, K = 12 users. « Dropout probability, p;~{0.1,0.2,0.3,0.4,0.5}
« Dataset: CIFAR-10
* Architecture: LeNet

Key Metrics
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Experiments

Setup

e N =120users, K = 12 users.

e Dataset: CIFAR-10
e Architecture: LeNet
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Concluding Remarks
e Random user selection in FL can lead to serious privacy leakage
o MultiRoundSecAgg is the first scheme for mitigating this challenge

o MultiRoundSecAgg reveals an interesting tradeoff between “privacy” and
“convergence rate” in FL



Concluding Remarks

e Random user selection in FL can lead to serious privacy leakage
o MultiRoundSecAgg is the first scheme for mitigating this challenge

o MultiRoundSecAgg reveals an interesting tradeoff between “privacy” and
“convergence rate” in FL

o Potential future directions
o Our metric for multi-round privacy is very strong. Careful relaxations may lead to
substantial improvements (e.g., in aggregation cardinality)
o Formalizing a fundamental trade-off between privacy and convergence-rate in FL?
o Our protocol guarantees that only an aggregate of models can be learned. How to
bound privacy leakage from aggregate models?
>
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Questions?
Thank you



Additional Slides



Optimality of Multi-RoundSecAgg

 Any strategy satisfying the multi-round privacy guarantee must have a
batch partitioning structure.

« Forgiven N,K < N/2and T, any strategy satisfying a multi-round privacy T can have at
MOSt Ry ax USEr sets

N/T

Rmax < (K/T

) = Rgp number of sets in BP



Our Multi-round Privacy is Strong
« A multi-round privacy T requires that any non-zero partial sum that the server
can reconstruct to be of the form

! ZJES Xj T az Z]esz Xj+ -+ an Ljes, x where |§;| = T.

Round 1 Round 2 Round J
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Each group has the same coefficient.



Relaxed Multi-round Privacy

* The relaxed multi-round privacy T requires that any non-zero partial sum that
the server can reconstruct to be of the form

djes ajxj, where |S| =T

Round 1 Round 2 Round J

Serve Serve Serv

X, X XN X, X XN X1 X2 XN



Relaxed Multi-round Privacy
* The relaxed multi-round privacy T requires that any non-zero partial sum that
the server can reconstruct to be of the form

djes ajxj, where |S| =T

Round 1 Round 2 Round J

Serve Serve Serv
X, X XN X, X XN X1 X2 XN

When T = 2, this allows reconstructing a; x; + a; x; which can reveal x; if a; > a;.



Relaxed Multi-round Privacy

* The relaxed multi-round privacy T requires that any non-zero partial sum that
the server can reconstruct to be of the form

djes a]x], where |S| =T

Round 1 Round 2 Round J

erve Serve Serv

X, X XN X, X XN X1 X2 XN

Batch partitioning is not necessary



Relaxed Multi-round Privacy
* The relaxed multi-round privacy T requires that any non-zero partial sum that
the server can reconstruct to be of the form

djes a]x], where |S| =T

Round 1 Round 2 Round J

Serve Serve Serv
X, X XN X, X XN X1 X2 XN

What's the optimal strategy?



Relaxed Multi-round Privacy

* The relaxed multi-round privacy T requires that any non-zero partial sum that
the server can reconstruct to be of the form

Yjes 4jxj, where |[§| =T

Example (N=6, K=4, T=2)
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Aggregation Fairness Gap F & Average Aggregation Cardinality C

Aggregation Fairness Gap F
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Multi-RoundSecAgg Convergence Guarantees

Assumptions
1. The loss functions L1, L, ..., Ly are p-smooth.
2. The loss functions Lq, Ly, ..., Ly are u-strongly convex.
3. The variance of the stochastic gradients at user i is bounded by o7
4. The expected squared norm of the stochastic gradients is uniformly bounded by G2.
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Necessity of Batch Partitioning (BP)

« Any strategy satisfying the multi-round privacy guarantee must have a batch
partitioning structure.



Necessity of Batch Partitioning (BP)

 Any strategy satisfying the multi-round privacy guarantee must have a batch
partitioning structure.

Proof Idea

Consider any scheme with a matrix Vi «n and denote the linear combination used
by the server by z; xr, zi~ U|0, 1],i € |R].
For the scheme to have privacy T, at least T elements of zV have to be equal.
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Consider any scheme with a matrix Vi «n and denote the linear combination used
by the server by z; xr, zi~ U|0, 1],i € |R].
For the scheme to have privacy T, at least T elements of zV have to be equal.
This implies that at least T columns of V are equal as z;~ U|0, 1].
mm) Batch partitioning is necessary




Necessity of Batch Partitioning (BP)

 Any strategy satisfying the multi-round privacy guarantee must have a batch
partitioning structure.

Proof Idea
Consider any scheme with a matrix Vi «n and denote the linear combination used
by the server by z; xr, zi~ U|0, 1],i € |R].
For the scheme to have privacy T, at least T elements of zV have to be equal.
This implies that at least T columns of V are equal as z;~ U|0, 1].
mm) Batch partitioning is necessary
* For given N,K < N/2 and T, any strategy satisfying a multi-round privacy T can
have at most Ry,ax USer sets

Rmax < (I,gﬂ) = Rgp number of sets in BP
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