On Polynomial Approximations for Privacy-Preserving and Verifiable ReLU Networks

Ramy E. Ali, Jinhyun So and Salman Avestimehr

Introduction

- Outsourcing inference tasks raises several privacy and integrity concerns.
- The users must verify the correctness of the computations.
- The users may want to keep their data private.
- The cloud also may want to keep its model private.

Introduction

- Outsourcing inference tasks raises several privacy and integrity concerns.
- The users must verify the correctness of the computations.
- The users may want to keep their data private.
- The cloud also may want to keep its model private.

- While there are many efficient privacy-preserving and verifiable techniques for polynomial-based computations [1-4], neural networks involve non-polynomial computations.

Introduction

- Outsourcing inference tasks raises several privacy and integrity concerns.
- The users must verify the correctness of the computations.
- The users may want to keep their data private.
- The cloud also may want to keep its model private.

- While there are many efficient privacy-preserving and verifiable techniques for polynomial-based computations [1-4], neural networks involve non-polynomial computations.
- Hence, several frameworks as CryptoNets [5] and SafetyNets [6] replace the nonpolynomial functions with polynomial functions.

Previous Work

- Much previous works as $[5,6]$ replace the ReLU function

$$
\sigma_{\mathrm{r}}(x)=\max (x, 0)
$$

with the square function

$$
\sigma_{\text {square }}(x)=x^{2}
$$

- Rationale [5]: "the lowest-degree non-linear polynomial function"

Previous Work

- Much previous works as $[5,6]$ replace the ReLU function

$$
\sigma_{\mathrm{r}}(x)=\max (x, 0)
$$

with the square function

$$
\sigma_{\text {square }}(x)=x^{2}
$$

- Rationale [5]: "the lowest-degree non-linear polynomial function"
- Max-pooling layers also are replaced with sum-pooling layers.
- This was shown empirically to work well for networks with small number of activation layers (3 or 4 layers).

This Work

- We empirically show that $\sigma_{\text {square }}(x)=x^{2}$ does not work well for deeper networks.
- We instead propose

$$
\sigma_{\text {poly }}(x)=x^{2}+x
$$

- $\sigma_{\text {poly }}$ improves the test accuracy by up to 9.4% compared to $\sigma_{\text {square }}$

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

1. What can be approximated with polynomials with integer coefficients? [9]

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

1. What can be approximated with polynomials with integer coefficients? [9]

- Only those polynomials themselves over intervals of length 4 or more!

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

1. What can be approximated with polynomials with integer coefficients? [9]

- Only those polynomials themselves over intervals of length 4 or more!

2. Can we uniformly approximate the ReLU even over $\mathrm{I}=[-1,1]$?

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

1. What can be approximated with polynomials with integer coefficients? [9]

- Only those polynomials themselves over intervals of length 4 or more!

2. Can we uniformly approximate the ReLU even over $\mathrm{I}=[-1,1]$?

- No

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

1. What can be approximated with polynomials with integer coefficients? [9]

- Only those polynomials themselves over intervals of length 4 or more!

2. Can we uniformly approximate the ReLU even over $\mathrm{I}=[-1,1]$?

- No

3. What can be done?

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.

1. What can be approximated with polynomials with integer coefficients? [9]

- Only those polynomials themselves over intervals of length 4 or more!

2. Can we uniformly approximate the ReLU even over $\mathrm{I}=[-1,1]$?

- No

3. What can be done?

- Uniform approximation of $\sigma_{\mathrm{sr}}(x ; c)=c \max (x, 0)$ with polynomial with integer coefficients over $\mathrm{I}=[-1,1]$, where c is even.

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.
3. What can be done?

- Uniform approximation of $\sigma_{\mathrm{sr}}(x ; c)=c \max (x, 0)$ with polynomial with integer coefficients over $\mathrm{I}=[-1,1]$, where c is even (e.g., $c=2$).
- The "best" degree-2 polynomial is given by

$$
\sigma_{\text {poly }}(x)=x^{2}+x .
$$

Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coefficients.
3. What can be done?

- Uniform approximation of $\sigma_{\mathrm{sr}}(x ; \mathrm{c})=c \max (x, 0)$ with polynomial with integer coefficients over $\mathrm{I}=[-1,1]$, where c is even (e.g., $c=2$).
- The "best" degree-2 polynomial is given by

$$
\sigma_{\text {poly }}(x)=x^{2}+x .
$$

4. What about large intervals $I=[-a, a]$?

- Use Minimax approximation and round the coefficients.
- This polynomial is given by

$$
\sigma_{\text {poly }}(x)=x^{2}+\mathrm{a} x
$$

Evaluation

1. We consider the convolutional network of [7].

The network has

- 7 convolutional layers
- 7 ReLU activation layers
- 2 max-pooling layers
- a fully connected layer and
- a Softmax activation layer.

Test Accuracy

Activation	CIFAR-10	CIFAR-100
CNN-ReLU	84.6%	54.7%
CNN-Poly	83.0%	55.3%
CNN-Quad	77.4%	51.3%

Evaluation

2. We consider the "Network In Network" architecture of [8].

The network has

- 9 convolutional layers
- 9 ReLU activation layers
- 2 max-pooling layers, Global pooling layer and
- a Softmax activation layer.

Test Accuracy

Activation	CIFAR-10	CIFAR-100
NIN-ReLU	88.5%	64.2%
NIN-Poly	88.7%	55.4%
NIN-Quad	81.0%	46.0%

NIN-ReLU $88.5 \% \quad 64.2 \%$
NIN-Poly $\quad 88.7 \% \quad 55.4 \%$
NIN-Quad $81.0 \% \quad 46.0 \%$

Discussion

- We have that empirically shown that $\sigma_{\mathrm{poly}}(x)=x^{2}+x$ significantly outperforms $\sigma_{\text {square }}(x)=x^{2}$.
- Our future work aims to test our activation function on deeper networks and other datasets and to investigate its optimality.

Questions?
 Thank you

References

[1] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy homomorphisms. Foundations of secure computation, 4(11):169-180, 1978.
[2] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the fortyfirst annual ACM symposium on Theory of computing, pages 169-178, 2009.
[3] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive proof systems. Journal of the ACM (JACM), 39(4):859-868, 1992.
[4] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a ring-based fully homomorphic encryption scheme. In IMA International Conference on Cryptography and Coding, pages 45-64. Springer, 2013.
[5] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In International Conference on Machine Learning, pages 201-210, 2016.
[6] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural networks on an untrusted cloud. In Advances in Neural Information Processing Systems, pages 4672-4681, 2017.
[7] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via minionn transformations. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pages 619-631, 2017.
[8] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. ICLR, 2014.
[9] Le Baron O Ferguson. What can be approximated by polynomials with integer coefficients. The American Mathematical Monthly, 113(5):403-414, 2006.

