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Introduction
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« While there are many efficient privacy-preserving and verifiable technigues for

polynomial-based computations [1-4], neural networks involve non-polynomial
computations.

* Hence, several frameworks as CryptoNets [5] and SafetyNets [6] replace the non-
polynomial functions with polynomial functions.



Previous Work

« Much previous works as [5, 6] replace the RelLU function
or(x) = max(x, 0)
with the square function
Usquare(x) = x~.
 Rationale [5]: "the lowest-degree non-linear polynomial function”
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Previous Work

« Much previous works as [5, 6] replace the RelLU function
or(x) = max(x, 0)
with the square function
Usquare(x) = x~.
 Rationale [5]: "the lowest-degree non-linear polynomial function”

« Max-pooling layers also are replaced with sum-pooling layers.

 This was shown empirically to work well for networks with small number of
activation layers (3 or 4 layers).



This Work

» We empirically show that gsquare(x) = x* does not work well for deeper networks.

* We instead propose
Tpoly (X) = x? + x.

Opoly IMproves the test accuracy by up to 9.4 % compared to osquare.
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Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coetfficients.

3. What can be done?
Uniform approximation of ag.(x; ¢) = ¢ max(x, 0) with polynomial with integer
coefficients over I = [—1,1], where c is even (e.g., ¢ = 2).

The "best” degree-2 polynomial is given by
Opoly (X) = x? + x.
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Theoretical Insights

Goal: Uniform approximation of ReLU with a polynomial with integer coetfficients.

3. What can be done?
« Uniform approximation of ag.(x; ¢) = ¢ max(x, 0) with polynomial with integer
coefficients over I = [—1,1], where c is even (e.g., ¢ = 2).
« The "best” degree-2 polynomial is given by . 2
Opoly (X) = x? + x. T
4. What about large intervals I = [—a, a]? 10-
« Use Minimax approximation and round the
coefficients.
 This polynomial is given by [ |

O'poly(X) = xz + ax. ~1.0 -0.8 —0.6 ~0.4 —02 00 02 04 06 08 1.0
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Evaluation

1. We consider the convolutional
network of [7].

The network has
7 convolutional layers
7 RelLU activation layers
2 max-pooling layers
a fully connected layer and
a Softmax activation layer.

Test Accuracy
Activation  CIFAR-10 CIFAR-100

CNN-ReLU  84.6% 54.7%
CNN-Poly  83.0% 55.3%
CNN-Quad  77.4% 51.3%



Evaluation

2. We consider the “Network In
Network” architecture of [8].

The network has
* 9 convolutional layers
* 9 RelU activation layers

« 2 max-pooling layers, Global
pooling layer and

 a Softmax activation layer.

Test Accuracy
Activation CIFAR-10 CIFAR-100

NIN-ReLU  88.5% 64.2%
NIN-Poly  88.7% 55.4%
NIN-Quad  81.0% 46.0%



Discussion

» We have that empirically shown that gp01y(x) = x? + x significantly outperforms
— 2
O-square(x) = X",

 Qur future work aims to test our activation function on deeper networks and other
datasets and to investigate its optimality.



Questions?
Thank you
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