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• Outsourcing inference tasks raises several privacy and integrity concerns.

• The users must verify the correctness of the computations. 
• The users may want to keep their data private.
• The cloud also may want to keep its model private.

• While there are many efficient privacy-preserving and verifiable techniques for 
polynomial-based computations [1-4], neural networks involve non-polynomial 
computations.

• Hence, several frameworks as CryptoNets [5] and SafetyNets [6] replace the non-
polynomial functions with polynomial functions.
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• Much previous works as [5, 6] replace the ReLU function 
𝜎!(𝑥) = max(𝑥, 0)

with the square function
𝜎"#$%!& 𝑥 = 𝑥'. 

• Rationale [5]: “the lowest-degree non-linear polynomial function”
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𝜎!(𝑥) = max(𝑥, 0)

with the square function
𝜎"#$%!& 𝑥 = 𝑥'. 

• Rationale [5]: “the lowest-degree non-linear polynomial function”

• Max-pooling layers also are replaced with sum-pooling layers. 

• This was shown empirically to work well for networks with small number of 
activation layers (3 or 4 layers).
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• We empirically show that 𝜎"#$%!& 𝑥 = 𝑥' does not work well for deeper networks. 

• We instead propose 
𝜎()*+ 𝑥 = 𝑥' + 𝑥. 

• 𝜎()*+ improves the test accuracy by up to 9.4 % compared to 𝜎"#$%!&. 
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Goal: Uniform approximation of ReLU with a polynomial with integer coefficients. 

3. What can be done?
• Uniform approximation of 𝜎"!(𝑥; c) = 𝑐 max(𝑥, 0) with polynomial with integer 

coefficients over I = [−1, 1], where 𝑐 is even (e.g., 𝑐 = 2). 
• The “best” degree-2 polynomial is given by 

𝜎()*+ 𝑥 = 𝑥' + 𝑥.

4. What about large intervals 𝐼 = [−𝑎, 𝑎]?
• Use Minimax approximation and round the 

coefficients. 
• This polynomial is given by

𝜎()*+ 𝑥 = 𝑥' + a𝑥.

Theoretical Insights



1. We consider the convolutional 
network of [7].

The network has
• 7 convolutional layers
• 7 ReLU activation layers
• 2 max-pooling layers
• a fully connected layer and
• a Softmax activation layer.
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Evaluation 

2. We consider the “Network In 
Network” architecture of [8].

The network has
• 9 convolutional layers
• 9 ReLU activation layers
• 2 max-pooling layers, Global 

pooling layer and 
• a Softmax activation layer.

Test Accuracy 



• We have that empirically shown that 𝜎()*+ 𝑥 = 𝑥' + 𝑥 significantly outperforms 
𝜎"#$%!& 𝑥 = 𝑥'.

• Our future work aims to test our activation function on deeper networks and other 
datasets and to investigate its optimality.

Discussion



Questions?
Thank you
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