
Erasure-Coded Key-Value Stores with Side
Information

Ramy E. Ali

Algorithms, Analytics & Augmented Intelligence group, Math
of Communications department, August 2018

• Key-value Stores Overview
• Background: Replication & Erasure Coding
• Coding with Side Information: Problem Formulation
• Impossibility Results
• Code Constructions
• Case Study: Latency-Storage Trade-off in AWS
• Discussion

Outline

• Applications: reservation systems, financial transactions,
distributed computing, …

• Numerous key-value stores: Amazon Dynamo, Apache Cassandra,
and CouchDB

Key-value Stores

• Data is stored over multiple
nodes.

Distributed Key-value Stores

failure

• Data is stored over multiple
nodes.

• Data is asynchronously
updated.

Write client

𝒗𝒂𝒍𝒖𝒆: 𝑾𝟏

Distributed Key-value Stores

• Data is stored over multiple
nodes.

• Data is asynchronously
updated.

Write client Write client

𝒗𝒂𝒍𝒖𝒆: 𝑾𝟏 𝒗𝒂𝒍𝒖𝒆: 𝑾𝟐

Distributed Key-value Stores

• Data is stored over multiple
nodes.

• Data is asynchronously
updated.

• Client must get the latest
possible version of the data
[Lamport 1979, ABD 1995].

Write client Write client

Read client: reads 𝑾𝟐

𝒗𝒂𝒍𝒖𝒆: 𝑾𝟏 𝒗𝒂𝒍𝒖𝒆: 𝑾𝟐

Distributed Key-value Stores

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

𝑾𝟏−−− −−

Distributed Key-value Stores

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

𝑾𝟏 𝑾𝟏−−− −

Distributed Key-value Stores

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

𝑾𝟏 𝑾𝟏−−− −

𝑾𝟐 𝑾𝟐𝑾𝟐−𝑾𝟐 −

Distributed Key-value Stores

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

2. Decentralized Nature
A server may not be aware of which updates received by others.

𝑾𝟏−

𝑾𝟐𝑾𝟐

𝑗𝑖

Distributed Key-value Stores

𝑆 𝑖 = {2} 𝑆 𝑗 = {1, 2}

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

2. Decentralized Nature
A server may not be aware of which updates received by others.

𝑾𝟏−

𝑾𝟐𝑾𝟐

does not know
𝑆(𝑗)

𝑗𝑖

does not know
𝑆(𝑖)

Distributed Key-value Stores

𝑆 𝑖 = {2} 𝑆 𝑗 = {1, 2}

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

2. Decentralized Nature
A server may not be aware of which updates received by others.

3. Consistency
A client must retrieve the latest possible update.

Read client: reads 𝑾𝟐

𝒗𝒂𝒍𝒖𝒆: 𝑾𝟏 𝒗𝒂𝒍𝒖𝒆: 𝑾𝟐

Distributed Key-value Stores

𝑾𝟏 𝑾𝟐 𝑾𝟐

• Fault tolerance: 𝑓 failures
• A complete write: write to 𝑐# ≤ 𝑛 − 𝑓 servers

Write client

How to handle asynchrony & failures?

1 2 𝑛

Write request

• Fault tolerance: 𝑓 failures
• A complete write: write to 𝑐# ≤ 𝑛 − 𝑓 servers

Write client

How to handle asynchrony & failures?

𝑓 = 11 2 𝑛

ACK

• Fault tolerance: 𝑓 failures
• A complete write: write to 𝑐# ≤ 𝑛 − 𝑓 servers
• Read: connect to 𝑐' ≤ 𝑛 − 𝑓 servers

Write client

Read client

How to handle asynchrony & failures?

1 2 𝑛

ACK

Read Request

𝑓 = 1

• Fault tolerance: 𝑓 failures
• A complete write: write to 𝑐# ≤ 𝑛 − 𝑓 servers
• Read: connect to 𝑐' ≤ 𝑛 − 𝑓 servers

Write client

Read client

How to handle asynchrony & failures?

𝑓 = 11 2 𝑛

ACK

ACK

• Fault tolerance: 𝑓 failures
• A complete write: write to 𝑐# ≤ 𝑛 − 𝑓 servers
• Read: connect to 𝑐' ≤ 𝑛 − 𝑓 servers

Write client

Read client

How to handle asynchrony & failures?

𝑓 = 1

𝑐 ≔ 𝑐# + 𝑐' − 𝑛 servers

1 2 𝑛

• Strong Consistency: decode the latest complete version
(or a later incomplete version)

How to handle asynchrony & failures?

Write client

Read client

𝑓 = 11 2 𝑛

𝑐 ≔ 𝑐# + 𝑐' − 𝑛 servers

• Strong Consistency: decode the latest complete version
(or a later incomplete version)

How to handle asynchrony & failures?

Write client

Read client

𝑓 = 1

Replication: 𝑐# + 𝑐' > 𝑛

1 2 𝑛

𝑐 ≔ 𝑐# + 𝑐' − 𝑛 servers

Replication

𝑾𝟏

Background: Replication

no of bitsVersion

Write client

𝐾
𝐾

Replication

𝑾𝟏
𝑾𝟐

Background: Replication

no of bitsVersion
𝐾

Write client

𝐾

𝐾

Storage Cost= 𝐾
node stores only latest version

Replication

𝑾𝟏
𝑾𝟐

Background: Replication

no of bitsVersion
𝐾

Write client

𝐾

𝐾

Significant Communication and Storage Costs

Storage Cost= 𝐾
node stores only latest version

Replication

𝑾𝟏
𝑾𝟐

Background: Replication

no of bitsVersion
𝐾

Write client

𝐾

𝐾

Significant Communication and Storage Costs

Storage Cost= 𝐾

Use (𝑛, 𝑐) MDS code, where
each node stores () of the data

𝑐 = 𝑐# + 𝑐$ − 𝑛

node stores only latest version

𝑐#

𝑐$

Background: Erasure Coding Challenges

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑥' 𝑥(𝑥) 𝑥&
𝑾𝟏 = (𝑥', 𝑥(, 𝑥), 𝑥&)

(6, 4)MDS code

Write client

1 2 3 4 5 6

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑥(𝑥) 𝑥&
𝑾𝟏 = (𝑥', 𝑥(, 𝑥), 𝑥&)

(6, 4)MDS code

Write client

𝑾𝟐 = (𝑦', 𝑦(, 𝑦), 𝑦&)

(6, 4)

Write client

MDS code

𝑥'

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑦' 𝑦(𝑦) 𝑥&

did not get the new version

Background: Erasure Coding Challenges

1 2 3 4 5 6

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑥(𝑥) 𝑥&

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑦' 𝑦(𝑦) 𝑥&

cannot decode

𝑾𝟏 = (𝑥', 𝑥(, 𝑥), 𝑥&)

(6, 4)MDS code

Write client

Read client

𝑾𝟐 = (𝑦', 𝑦(, 𝑦), 𝑦&)

(6, 4)

Write client
𝑥'

MDS code

did not get the new version

𝑾𝟏 nor 𝑾𝟐

Background: Erasure Coding Challenges

1 2 3 4 5 6

needs 4 symbols of the same version

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑥(𝑥) 𝑥&
𝑾𝟏 = (𝑥', 𝑥(, 𝑥), 𝑥&)

(6, 4)MDS code

Write client

Read client

𝑾𝟐 = (𝑦', 𝑦(, 𝑦), 𝑦&)

(6, 4)

Write client

MDS code

𝑥'

nodes have to store
multiple versions

6
#$%

&

𝑥# 6
#$%

&

𝑎#𝑥#𝑦' 𝑦(𝑦) 𝑥&

can decode 𝑾𝟏

Background: Erasure Coding Challenges

1 2 3 4 5 6

Replication

𝑾𝟏
𝑾𝟐

no of bitsVersion

Simple Erasure
Coding

𝑾𝟏

no of bitsVersion

𝐾/𝑐

Write client

𝐾/𝑐

Write client

𝐾
𝐾
𝐾

Storage Cost= 𝐾

Background: Erasure Coding Challenges

Replication

𝑾𝟏
𝑾𝟐

no of bitsVersion

Simple Erasure
Coding

𝑾𝟐

𝑾𝟏

no of bitsVersion

𝐾/𝑐

𝐾/𝑐

Write client

𝐾/𝑐

Write client

𝐾
𝐾
𝐾

Storage Cost= 𝐾

Storage Cost= 𝜈 (
) 𝐾

Background: Erasure Coding Challenges

Replication

𝑾𝟏
𝑾𝟐

Simple Erasure
Coding

no of bitsVersion

𝑾𝟐

𝑾𝟏

no of bitsVersion

𝐾/𝑐

𝐾/𝑐

𝐾
𝐾

node stores multiple versions

node stores only latest version

Background: Erasure Coding Challenges

Storage Cost= 𝐾

Storage Cost= 𝜈 (
) 𝐾

Replication

𝑾𝟏
𝑾𝟐

no of bitsVersion

Simple Erasure
Coding

Erasure coding gain

𝑾𝟐

𝑾𝟏

no of bitsVersion

𝐾/𝑐

𝐾/𝑐

𝐾
𝐾

Background: Erasure Coding Challenges

Storage Cost= 𝐾

Storage Cost= 𝜈 (
) 𝐾

Replication

𝑾𝟏
𝑾𝟐

no of bitsVersion

Simple Erasure
Coding

Erasure coding gain

𝑾𝟐

𝑾𝟏

no of bitsVersion
Offsets the gain

𝐾/𝑐

𝐾/𝑐

𝐾
𝐾

Background: Erasure Coding Challenges

Storage Cost= 𝐾

Storage Cost= 𝜈 (
) 𝐾

Replication

𝑾𝟏
𝑾𝟐

𝑾𝟐

𝑾𝟏

no of bitsVersion

no of bitsVersion

𝐾/𝑐

𝐾/𝑐

Storage Cost= 𝐾

Erasure coding gain

Offsets the gain

Storage Cost= 𝜈 (
) 𝐾

𝐾
𝐾

Simple Erasure
Coding

Background: Erasure Coding Challenges

Can we do better?

Replication

𝑾𝟏
𝑾𝟐

Simple Erasure
Coding

𝑾𝟐

𝑾𝟏

no of bitsVersion

no of bitsVersion

Storage Cost≥ .
/
(
)
𝐾 − Θ(1), 𝜈 < 𝑐[Wang et al. 2014]

Can we do better?
𝐾/𝑐

𝐾/𝑐

Storage Cost= 𝐾

𝐾
𝐾 Erasure coding gain

Offsets the gain

Storage Cost= 𝜈 (
) 𝐾

Background: Erasure Coding Challenges

Decentralized

Storage Cost ≥
𝝂
𝒄 −

𝜈 𝜈 − 1
𝑐% + 𝑜

1
𝑐% 𝐾

Erasure-coded Key-value Stores
with Side Information

[Wang et al. 2014]

Centralized

Storage Cost =
𝟏
𝒄 𝐾

Decentralized

Storage Cost ≥
𝝂
𝒄 −

𝜈 𝜈 − 1
𝑐% + 𝑜

1
𝑐% 𝐾

Erasure-coded Key-value Stores
with Side Information

[Wang et al. 2014]

Centralized

Storage Cost =
𝟏
𝒄 𝐾

Decentralized

Storage Cost ≥
𝝂
𝒄 −

𝜈 𝜈 − 1
𝑐% + 𝑜

1
𝑐% 𝐾

Erasure-coded Key-value Stores
with Side Information

Geo-distributed
key-value store

High Latency

[Wang et al. 2014]

Centralized

Storage Cost =
𝟏
𝒄 𝐾

Decentralized

Storage Cost ≥
𝝂
𝒄 −

𝜈 𝜈 − 1
𝑐% + 𝑜

1
𝑐% 𝐾

Erasure-coded Key-value Stores
with Side Information

This Work: Coding with Partial Side Information

Storage Cost?
High Latency

[Wang et al. 2014]

Geo-distributed
key-value storeLatency-Storage Trade-off

Coding with Side Information

• Topology is given by a directed graph with degree 𝐻
𝒢 = (𝒩, ℰ)

knows 𝑆(𝑗)

𝑗𝑖

knows 𝑆(𝑖)

𝑾𝟏−

𝑾𝟐𝑾𝟐

𝑆 𝑗 = {1, 2}𝑆 𝑖 = {2}

Coding with Side Information

• Topology is given by a directed graph with degree 𝐻
𝒢 = (𝒩, ℰ)

knows 𝑆(𝑗)

𝑗𝑖

knows 𝑆(𝑖)

Decoding Requirement: latest complete version (or a later version)

𝑾𝟏−

𝑾𝟐𝑾𝟐

𝑆 𝑗 = {1, 2}𝑆 𝑖 = {2}

Coding with Side Information

• Topology is given by a directed graph with degree 𝐻
𝒢 = (𝒩, ℰ)

Idea: Can the servers guess which version is the latest complete?

knows 𝑆(𝑗)

𝑗𝑖

knows 𝑆(𝑖)

Decoding Requirement: latest complete version (or a later version)

𝑾𝟏−

𝑾𝟐𝑾𝟐

𝑆 𝑗 = {1, 2}𝑆 𝑖 = {2}

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

0

4

𝑐* = 4

1

3 2

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

1

𝑾𝟐𝑾𝟐

𝑾𝟐

0

4

3 2

𝑐* = 4

𝑾𝟐 is incomplete

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

1

𝑾𝟐𝑾𝟐

𝑾𝟐

0

4

3 2

𝑐* = 4

𝑾𝟐 is
complete?

𝑾𝟐 is incomplete

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

1

𝑾𝟐𝑾𝟐

𝑾𝟐

0

4

3 2

𝑐* = 4

𝑾𝟐 is
complete?

No

𝑾𝟐 is incomplete

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

𝑾𝟐𝑾𝟐

𝑾𝟐

0

𝑐* = 4

𝑾𝟐 is
complete?

𝑾𝟐 is incomplete

1

3 2

4

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

𝑾𝟐𝑾𝟐

𝑾𝟐

0

𝑐* = 4

𝑾𝟐 is
complete?

Yes, if node 0 has it

No, if node 0 does
not have it

𝑾𝟐 is incomplete

1

3 2

4

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

𝑾𝟐𝑾𝟐

𝑾𝟐

0

𝑐* = 4

𝑾𝟐 is
complete?

Yes, if node 0 has it

No, if node 0 does
not have it

node 2 does not know that 𝑾𝟐 is incomplete!

1

3 2

4

Coding with Side Information: Challenges

Can the servers guess which version is the latest complete?

𝑾𝟐𝑾𝟐

𝑾𝟐

0

𝑐* = 4

𝑾𝟐 is
complete?

Yes, if node 0 has it

No, if node 0 does
not have it

node 2 does not know that 𝑾𝟐 is incomplete!
Given 𝒢, how many servers cannot guess correctly?

14

23

Coding with Side Information: Challenges
Server Side
Information

Complete
Version

observes at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝑐# servers having 𝑾𝟐𝐻 servers

Coding with Side Information: Challenges

𝑐# − 1 servers having 𝑾𝟐

may still observe at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

Incomplete
Version

Server Side
Information

𝐻 servers

Server Side
Information

Complete
Version

𝑐# servers having 𝑾𝟐

observes at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Coding with Side Information: Challenges
Server Side
Information

Incomplete
Version

𝑐# − 1 servers having 𝑾𝟐

may still at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Given an incomplete version, how many servers may assume it is complete?

Coding with Side Information: Challenges
Server Side
Information

Incomplete
Version

𝑐# − 1 servers having 𝑾𝟐

may still at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Given an incomplete version, how many servers may assume it is complete?

9𝑚 𝒢 = max
𝒢!A 𝒩!,ℰ! ⊂𝒢: 𝒩! A)"G(

{𝑖H∈ 𝒩H: deg𝒢!
I 𝑖H ≥ 𝑐# +𝐻 − 𝑛}

Coding with Side Information: Challenges
Server Side
Information

𝑐# − 1 servers having 𝑾𝟐

may still at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Incomplete
Version

Given an incomplete version, how many servers may assume it is complete?

Computationally challenging
for large graphs

𝑛
𝑐* − 1

We need to consider

9𝑚 𝒢 = max
𝒢!A 𝒩!,ℰ! ⊂𝒢: 𝒩! A)"G(

{𝑖H∈ 𝒩H: deg𝒢!
I 𝑖H ≥ 𝑐# +𝐻 − 𝑛}

graphs

Coding with Side Information: Challenges
Server Side
Information

𝑐# − 1 servers having 𝑾𝟐

may still at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Incomplete
Version

Given an incomplete version, how many servers may assume it is complete?

Computationally challenging
for large graphs

𝑛
𝑐* − 1

We need to consider

9𝑚 𝒢 = max
𝒢!A 𝒩!,ℰ! ⊂𝒢: 𝒩! A)"G(

{𝑖H∈ 𝒩H: deg𝒢!
I 𝑖H ≥ 𝑐# +𝐻 − 𝑛}

graphs

9𝑚 𝒢 ≤ 𝑛 − 𝑐# + 1 (𝑛 − 𝐻)

Coding with Side Information: Construction
Server Side
Information

𝑐# − 1 servers having 𝑾𝟐

may still at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Incomplete
Version

Coding Strategy: a server stores part of 𝑾𝟐 if it observes at
least 𝑐# +𝐻 − 𝑛 servers having it.

Coding with Side Information: Construction

At most 9𝑚 𝒢 servers store 𝑾𝟐 when it is incomplete.

Server Side
Information

𝑐# − 1 servers having 𝑾𝟐

may still at least 𝑐# +𝐻 − 𝑛 servers having 𝑾𝟐

𝐻 servers

Incomplete
Version

Storage Cost =
𝟏
𝒄 +

𝜈 − 1 5𝑚 𝒢
𝑐' + 𝑜

5𝑚 𝒢
𝑐' 𝐾

Coding Strategy: a server stores part of 𝑾𝟐 if it observes at
least 𝑐# +𝐻 − 𝑛 servers having it.

Centralized

Storage Cost =
𝟏
𝒄 𝐾

Decentralized

Storage Cost ≥
𝝂
𝒄 −

𝜈 𝜈 − 1
𝑐% + 𝑜

1
𝑐% 𝐾

Coding with Side Information

Partial Information

Storage Cost =
𝟏
𝒄 +

𝜈 − 1 5𝑚 𝒢
𝑐' + 𝑜

5𝑚 𝒢
𝑐' 𝐾

Centralized

Storage Cost =
𝟏
𝒄 𝐾

Decentralized

Storage Cost ≥
𝝂
𝒄 −

𝜈 𝜈 − 1
𝑐% + 𝑜

1
𝑐% 𝐾

Coding with Side Information

Storage Reduction = 11%

Partial Information

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)

Impossibility Results

𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏

𝑺𝟏
𝑾𝟏 is the latest
complete version𝑐 − 𝑎 servers

Impossibility Results

𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏

𝑺𝟏

𝑺𝟐

𝑾𝟏 is the latest
complete version

𝑾𝟐 is the latest
complete version

𝑐 − 𝑎 servers

𝑎 servers𝑐 − 𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏 and 𝑾𝟐

cannot differentiate between 𝑺𝟏 and 𝑺𝟐

Impossibility Results

Decoding 𝑾𝟐 in 𝑺𝟏 Storage Cost ≥
1

𝑐 − 𝑎
𝐾

𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏

𝑺𝟏

𝑺𝟐

𝑾𝟏 is the latest
complete version

𝑾𝟐 is the latest
complete version

𝑐 − 𝑎 servers

𝑎 servers𝑐 − 𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏 and 𝑾𝟐

Impossibility Results

Decoding 𝑾𝟏 in 𝑺𝟏 Storage Cost ≥
2

𝑐 + 𝑎
𝐾

𝑾𝟏 in 𝑺𝟏

𝑾𝟐 in 𝑺𝟐

𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏

𝑺𝟏

𝑺𝟐

𝑾𝟏 is the latest
complete version

𝑾𝟐 is the latest
complete version

𝑐 − 𝑎 servers

𝑎 servers𝑐 − 𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏 and 𝑾𝟐

𝑐 servers of 𝑺𝟏 and the a servers of 𝑺𝟐

Impossibility Results

Storage Cost ≥ min
1

𝑐 − 𝑎
,
2

𝑐 + 𝑎
𝐾

𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏

𝑺𝟏

𝑺𝟐

𝑾𝟏 is the latest
complete version

𝑾𝟐 is the latest
complete version

𝑐 − 𝑎 servers

𝑎 servers𝑐 − 𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏 and 𝑾𝟐

Impossibility Results

Side Information is not usefulImplication:

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)

Storage Cost ≥ min
1

𝑐 − 𝑎
,
2

𝑐 + 𝑎
𝐾

(𝑐 = 3, 𝑎 = 1)

Storage Cost ≥ 𝐾/2 Can be achieved without side
information [Wang et al. 2014]

Centralized Decentralized

Coding with Side Information

Side Information
is not useful

Side Information
is useful

A careful study of the network topology is necessary

Partial Information

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)

Case Study: Amazon Web Services (AWS)

Case Study: AWS Inter-Region Latency

Source: https://www.cloudping.co/

An edge exists between node 𝑖 and node 𝑗 if the latency between them
≤ maximum allowable latency

https://www.cloudping.co/

Case Study: Latency-Storage Trade-off in AWS

200 220 240 260 280 300 320
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ms

Centralized Decentralized Partial Information

Storage Cost
with Side
information

Storage Cost
without Side
information

Discussion

Centralized Decentralized

Side Information
is not useful

Partial Information

Side Information
is useful

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)

Questions?
Thank You

