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• Applications: reservation systems, financial transactions, 
distributed computing, …

• Numerous key-value stores: Amazon Dynamo, Apache Cassandra, 
and CouchDB
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• Data is stored over multiple 
nodes.

• Data is asynchronously 
updated. 

• Client must get the latest 
possible version of the data
[Lamport 1979, ABD 1995].
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1. Asynchrony
Data updates may not arrive at all servers simultaneously.

2. Decentralized Nature
A server may not be aware of which updates received by others.

3. Consistency
A client must retrieve the latest possible update.

Read client: reads 𝑾𝟐

𝒗𝒂𝒍𝒖𝒆: 𝑾𝟏 𝒗𝒂𝒍𝒖𝒆: 𝑾𝟐

Distributed Key-value Stores
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• A complete write: write to 𝑐# ≤ 𝑛 − 𝑓 servers
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• Strong Consistency: decode the latest complete version 
(or a later incomplete version)

How to handle asynchrony & failures?
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• Strong Consistency: decode the latest complete version 
(or a later incomplete version)

How to handle asynchrony & failures?

Write client
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Replication: 𝑐# + 𝑐' > 𝑛
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• Topology is given by a directed graph with degree 𝐻
𝒢 = (𝒩, ℰ)

Idea: Can the servers guess which version is the latest complete?
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Impossibility Results

Decoding 𝑾𝟏 in 𝑺𝟏 Storage Cost ≥
2

𝑐 + 𝑎
𝐾

𝑾𝟏 in 𝑺𝟏

𝑾𝟐 in 𝑺𝟐

𝑎 servers
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complete version
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complete version

𝑐 − 𝑎 servers

𝑎 servers𝑐 − 𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏 and 𝑾𝟐

𝑐 servers of 𝑺𝟏 and the a servers of 𝑺𝟐



Impossibility Results

Storage Cost ≥ min
1

𝑐 − 𝑎
,
2

𝑐 + 𝑎
𝐾

𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏

𝑺𝟏

𝑺𝟐

𝑾𝟏 is the latest 
complete version

𝑾𝟐 is the latest 
complete version

𝑐 − 𝑎 servers

𝑎 servers𝑐 − 𝑎 servers

𝑾𝟏 and 𝑾𝟐
𝑾𝟏 and 𝑾𝟐



Impossibility Results

Side Information is not usefulImplication:

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)

Storage Cost ≥ min
1

𝑐 − 𝑎
,
2

𝑐 + 𝑎
𝐾

(𝑐 = 3, 𝑎 = 1)

Storage Cost ≥ 𝐾/2 Can be achieved without side 
information [Wang et al. 2014]



Centralized Decentralized

Coding with Side Information

Side Information
is not useful

Side Information
is useful

A careful study of the network topology is necessary 

Partial Information  

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)



Case Study: Amazon Web Services (AWS)



Case Study: AWS Inter-Region Latency

Source: https://www.cloudping.co/

An edge exists between node 𝑖 and node 𝑗 if the latency between them
≤ maximum allowable latency

https://www.cloudping.co/


Case Study: Latency-Storage Trade-off in AWS 
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Discussion

Centralized Decentralized

Side Information
is not useful

Partial Information  

Side Information
is useful

(𝑛 = 5, 𝑐# = 𝑐$ = 4, 𝜈 = 2)



Questions?
Thank You


