Erasure-Coded Key-Value Stores with Side Information

Ramy E. Ali

Algorithms, Analytics & Augmented Intelligence group, Math of Communications department, August 2018

Outline

- Key-value Stores Overview
- Background: Replication & Erasure Coding
- Coding with Side Information: Problem Formulation
- Impossibility Results
- Code Constructions
- Case Study: Latency-Storage Trade-off in AWS
- Discussion

Key-value Stores

- Applications: reservation systems, financial transactions, distributed computing, ...
- Numerous key-value stores: Amazon Dynamo, Apache Cassandra, and CouchDB

 Data is stored over multiple nodes.

- Data is stored over multiple nodes.
- Data is asynchronously updated.

- Data is stored over multiple nodes.
- Data is asynchronously updated.

- Data is stored over multiple nodes.
- Data is asynchronously updated.
- Client must get the *latest possible version* of the data
 [Lamport 1979, ABD 1995].

1. Asynchrony

Data updates may not arrive at all servers simultaneously.

1. Asynchrony

Data updates may not arrive at all servers simultaneously.

1. Asynchrony

Data updates may not arrive at all servers simultaneously.

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

2. Decentralized Nature

A server may not be aware of which updates received by others.

1. Asynchrony
Data updates may not arrive at all servers simultaneously.

2. Decentralized Nature

A server may not be aware of which updates received by others.

- 1. Asynchrony
 Data updates may not arrive at all servers simultaneously.
- 2. Decentralized Nature
 A server may not be aware of which updates received by others.
- 3. Consistency
 A client must retrieve the latest possible update.

- Fault tolerance: f failures
- A complete write: write to $c_W \leq n f$ servers

- Fault tolerance: f failures
- A complete write: write to $c_W \leq n f$ servers

- Fault tolerance: f failures
- A complete write: write to $c_W \leq n f$ servers

- Fault tolerance: f failures
- A complete write: write to $c_W \leq n f$ servers

- Fault tolerance: f failures
- A complete write: write to $c_W \leq n f$ servers

 Strong Consistency: decode the latest complete version (or a later incomplete version)

 Strong Consistency: decode the latest complete version (or a later incomplete version)

Write client

no of bits

K

Storage Cost= K

node stores only latest version

Significant Communication and Storage Costs

Storage Cost= K

node stores only latest version

Significant Communication and Storage Costs

Use (n, c) MDS code, where each node stores $\frac{1}{c}$ of the data

 χ_1

Write client

$$\boldsymbol{W_1} = (x_1, x_2, x_3, x_4)$$

 x_3

$$x_4$$

$$\sum_{i=0}^{4} x_i$$

$$\sum_{i=0}^{4} a_i x_i$$

Write client

$$\boldsymbol{W_1} = (x_1, x_2, x_3, x_4)$$

Write client

$$W_2 = (y_1, y_2, y_3, y_4)$$

$$\sum_{i=0}^{4} x_i$$

$$\sum_{i=0}^{4} a_i x_i$$

did not get the new version

Write client

$$\boldsymbol{W_1} = (x_1, x_2, x_3, x_4)$$

Write client

(6,4) MDS code

$$x_4$$

 χ_4

$$x_i \sum_{i=0}^{\infty} x_i$$

 $W_2 = (y_1, y_2, y_3, y_4)$

cannot decode

 W_1 nor W_2

did not get the new version

needs 4 symbols of the same version Read client

Read client

Storage Cost= *K*

 W_2

no of bits

Write client

Simple Erasure Coding

Version

no of bits

K/c

Write client

Replication

Storage Cost= *K*

Version

 W_2

no of bits

Write client

Simple Erasure Coding

Version

 W_1

 W_2

no of bits

K/c

Write client

Replication

Storage Cost= K

node stores only latest version

 \overline{W}_1

Version

 W_2

no of bits

Λ

K

Simple Erasure Coding

no of bits

 W_1

Version

 W_2

K/c

K/c

Storage Cost= $v = \frac{1}{c} K$ node stores multiple versions

Replication

Storage Cost= *K*

Storage Cost= $\nu = \frac{1}{C} K$

Version

 W_2

no of bits

Erasure coding gain

Simple Erasure Coding

Version

 W_1

 W_2

no of bits

K/c

K/c

Replication

Storage Cost= K

Version

 W_1

 W_2

no of bits

K

K

Erasure coding gain

Simple Erasure Coding

Version

 W_1

 W_2

no of bits

K/c

K/c

Offsets the gain

Replication

Storage Cost= K

Version

 \overline{W}_1

 W_2

no of bits

K

K

Erasure coding gain

Simple Erasure Coding

Version

 W_1

 W_2

no of bits

K/c

K/c

Offsets the gain

Can we do better?

Erasure-coded Key-value Stores with Side Information

Decentralized [Wang et al. 2014]

Storage Cost
$$\geq \left(\frac{v}{c} - \frac{v(v-1)}{c^2} + o\left(\frac{1}{c^2}\right)\right)K$$

Erasure-coded Key-value Stores with Side Information

Decentralized [Wang et al. 2014]

Centralized

Storage Cost
$$\geq \left(\frac{v}{c} - \frac{v(v-1)}{c^2} + o\left(\frac{1}{c^2}\right)\right)K$$

Storage Cost
$$=\frac{1}{c} K$$

Erasure-coded Key-value Stores with Side Information

Decentralized [Wang et al. 2014]

Centralized

Storage Cost
$$\geq \left(\frac{v}{c} - \frac{v(v-1)}{c^2} + o\left(\frac{1}{c^2}\right)\right)K$$

Storage Cost =
$$\frac{1}{c} K$$

High Latency

Geo-distributed key-value store

Erasure-coded Key-value Stores with Side Information

Decentralized [Wang et al. 2014]

Centralized

This Work: Coding with Partial Side Information

Latency-Storage Trade-off

NOKIA Bell Labs

Geo-distributed

key-value store

Topology is given by a directed graph with degree H

Topology is given by a directed graph with degree H

Decoding Requirement: latest complete version (or a later version)

Topology is given by a directed graph with degree H

Decoding Requirement: latest complete version (or a later version)

Idea: Can the servers guess which version is the latest complete?

Can the servers guess which version is the latest complete?

$$c_W = 4$$

Can the servers guess which version is the latest complete?

$$c_W = 4$$

Can the servers guess which version is the latest complete?

Can the servers guess which version is the latest complete?

Can the servers guess which version is the latest complete?

Can the servers guess which version is the latest complete?

Can the servers guess which version is the latest complete?

node 2 does not know that W_2 is incomplete!

Can the servers guess which version is the latest complete?

node 2 does not know that W_2 is incomplete!

Given G, how many servers cannot guess correctly?

observes at least $c_W + H - n$ servers having W_2

may still observe at least $c_W + H - n$ servers having W_2

may still at least $c_W + H - n$ servers having W_2

Given an incomplete version, how many servers may assume it is complete?

may still at least $c_W + H - n$ servers having W_2

Given an incomplete version, how many servers may assume it is complete?

$$\overline{m}(\mathcal{G}) = \max_{\mathcal{G}' = (\mathcal{N}', \mathcal{E}') \subset \mathcal{G}: |\mathcal{N}'| = c_W - 1} \left| \{ i' \in \mathcal{N}' : \deg_{\mathcal{G}'}^+(i') \ge c_W + H - n \} \right|$$

may still at least $c_W + H - n$ servers having W_2

Given an incomplete version, how many servers may assume it is complete?

$$\overline{m}(\mathcal{G}) = \max_{\substack{\mathcal{G}' = (\mathcal{N}', \mathcal{E}') \subset \mathcal{G}: |\mathcal{N}'| = c_W - 1}} \left| \{i' \in \mathcal{N}': \deg_{\mathcal{G}'}^+(i') \geq c_W + H - n\} \right|$$
We need to consider $\binom{n}{c_W - 1}$ graphs
$$\text{Computationally challenging for large graphs}$$

for large graphs

may still at least $c_W + H - n$ servers having W_2

Given an incomplete version, how many servers may assume it is complete?

$$\overline{m}(\mathcal{G}) = \max_{\substack{\mathcal{G}' = (\mathcal{N}', \mathcal{E}') \subset \mathcal{G}: |\mathcal{N}'| = c_W - 1}} \left| \{i' \in \mathcal{N}': \deg_{\mathcal{G}'}^+(i') \geq c_W + H - n\} \right|$$
We need to consider $\binom{n}{c_W - 1}$ graphs
$$\text{Computationally challenging for large graphs}$$

for large graphs

$$\overline{m}(\mathcal{G}) \le (n - c_W + 1) (n - H)$$

Coding with Side Information: Construction

may still at least $c_W + H - n$ servers having W_2

Coding Strategy: a server stores part of W_2 if it observes at least $c_W + H - n$ servers having it.

Coding with Side Information: Construction

may still at least $c_W + H - n$ servers having W_2

Coding Strategy: a server stores part of W_2 if it observes at least $c_W + H - n$ servers having it.

At most $\overline{m}(\mathcal{G})$ servers store W_2 when it is incomplete.

Storage Cost =
$$\left(\frac{1}{c} + \frac{(\nu - 1)\overline{m}(\mathcal{G})}{c^2} + o\left(\frac{\overline{m}(\mathcal{G})}{c^2}\right)\right)K$$

Decentralized

Partial Information

Centralized

Storage Cost
$$\geq \left(\frac{v}{c} - \frac{v(v-1)}{c^2} + o\left(\frac{1}{c^2}\right)\right)K$$

Storage Cost =
$$\frac{1}{c} K$$

Storage Cost =
$$\left(\frac{1}{c} + \frac{(\nu - 1)\overline{m}(\mathcal{G})}{c^2} + o\left(\frac{\overline{m}(\mathcal{G})}{c^2}\right)\right)K$$

Decentralized

Partial Information

Centralized

Storage Cost
$$\geq \left(\frac{v}{c} - \frac{v(v-1)}{c^2} + o\left(\frac{1}{c^2}\right)\right)K$$

Storage Cost =
$$\frac{1}{c} K$$

Storage Reduction = 11%

$$(n = 5, c_W = c_R = 4, \nu = 2)$$

W₁ is the latestcomplete version

cannot differentiate between S_1 and S_2

 W_1 and W_2

complete version

Decoding
$$W_2$$
 in S_1 Storage Cost $\geq \frac{1}{c-a}K$

 W_1 and W_2

W₁ is the latestcomplete version

W₂ is the latest complete version

Storage Cost
$$\geq \min\left\{\frac{1}{c-a}, \frac{2}{c+a}\right\} K$$

Storage Cost
$$\geq \min\left\{\frac{1}{c-a}, \frac{2}{c+a}\right\} K$$

Implication:

Side Information is not useful

$$(n = 5, c_W = c_R = 4, \nu = 2)$$

 $(c = 3, a = 1)$

Storage Cost $\geq K/2 \rightarrow$

Can be achieved without side information [Wang et al. 2014]

Decentralized

Partial Information

Centralized

Side Information is not useful

Side Information is useful

$$(n = 5, c_W = c_R = 4, \nu = 2)$$

A careful study of the network topology is necessary

Case Study: Amazon Web Services (AWS)

Data center	Location	Data center	Location	Data center	Location
1	Tokyo	6	Frankfurt	11	Ohio
2	Seoul	7	Ireland	12	N. California
3	Mumbai	8	London	13	Oregon
4	Singapore	9	Paris		
5	Canada	10	N. Virginia		

Case Study: AWS Inter-Region Latency

Data	1	2	3	4	5	6	7	8	9	10	11	12	13
cen-													
ter													
1	0	37.8	157.2	90.8	177.2	249.7	234.4	259.4	259.4	167.5	166.2	119.6	106.5
2	37.9	0	160.1	105.7	199.7	269.9	255.7	269.3	268.2	190.7	189.3	153	128.2
3	136.9	181.5	0	68.8	212.8	129.9	134.4	128	118.3	187.7	202.2	240.8	225
4	90	112.4	82.3	0	240.9	189.7	186.4	181.3	178.5	267.8	232.6	184.7	194.7
5	159.2	189.5	202	222.3	0	103.1	81.7	92	95.4	17.8	27.2	82	81.7
6	241.3	267.3	115.3	174.8	107	0	24.2	19.1	12.8	90.4	98.9	147.8	165.4
7	230	258.4	128.4	180	85.2	23.8	0	14.6	21.6	72.7	84.6	152.8	137.4
8	236.9	265.3	116.9	168	93.9	15.7	13.2	0	10.7	78	88.7	141.7	148.5
9	233.5	301.6	111.6	173	97.6	14.4	20.4	11	0	81.7	99.4	140.7	157.8
10	164.3	188.8	195.8	239.9	18.8	92	73.1	79.8	110.5	0	13.66	67.2	79.3
11	162.4	189.9	199.7	226	27.6	121.5	87.7	91.3	94.6	16.4	0	55.9	74.53
12	111.4	157.9	253.4	178.3	81.7	148.7	150.7	140	146.7	67.8	53.9	0	23.4
13	109.8	139.7	226	166.5	73.4	167.8	137.8	150.8	160.4	84	73	25.8	0

Source: https://www.cloudping.co/

An edge exists between node i and node j if the latency between them \leq maximum allowable latency

Case Study: Latency-Storage Trade-off in AWS

Discussion

Decentralized

Partial Information

Centralized

Side Information is useful

$$(n = 5, c_W = c_R = 4, \nu = 2)$$

Questions? Thank You

